Category: Ecosystems

Turning the Tide: How to Finance a Sustainable Ocean Recovery

Turning the Tide: How to Finance a Sustainable Ocean Recovery

This seminal guidance is a market-first practical toolkit for financial institutions to pivot their activities towards financing a sustainable blue economy.

Designed for banks, insurers and investors, the guidance outlines how to avoid and mitigate environmental and social risks and impacts, as well as highlighting opportunities, when providing capital to companies or projects within the blue economy. 

Five key ocean sectors are explored, chosen for their established connection with private finance: seafood, shipping, ports, coastal and marine tourism and marine renewable energy, notably offshore wind. 

Download the guide and recommendations here.

Watch the accompanying webinar here.

Accompanying the guidance is a set of easy-to-follow recommendations on how to approach financial activity in ocean sectors, allowing financial decision-makers to take immediate action.

The download is a compressed zip folder that includes a useful Excel file with a sector-by-sector breakdown of sustainable blue finance recommendations.

Combined, the guidance and recommendations provide a road map with a detailed breakdown of which client activities to seek out as best practice, which activities to challenge, and which activities to avoid completely due to their damaging nature.  

The guidance leverages best practice based on input from over 50 pioneering institutions and experts. It supports the implementation of the Sustainable Blue Economy Finance Principles, which are a keystone in the market for financing a sustainable blue economy. The Guidance is a follow-up to the Rising Tide report which was launched in February, which mapped the ocean finance space and provided an entry point for financial institutions. 

If you are looking to easily implement sustainable ocean finance strategies and learn best practice from 50+ finance organisations, download the guide today.

Read the press release here.
UN survival plan offers new hope for the planet

UN survival plan offers new hope for the planet

By Tim Radford

A bold UN survival plan could put nature back in charge of the Earth − and researchers explain why that should happen.

LONDON, 26 February, 2021 − UN chiefs want to transform the world by putting nature back at the heart of global decision-making, arguing that the global economic shutdown triggered by the Covid-19 pandemic is an opportunity to change the planet for the better: for a stable climate, for cleaner air and water, and for a richer natural environment, thanks to the UN survival plan.

The goal? A more sustainable and more equitable world by 2030, a carbon-neutral world by 2050, a curb on global pollution and waste and a halt to ever-accelerating rates of wildlife extinction worldwide.

The methods? One of the first, in Making Peace With Nature, the new United Nations Environment Programme report, will be to incorporate what conservationists call “natural capital” into measures of national economic performance.

That is because forests, savannahs, wetlands and other natural habitats represent wealth, and their loss accelerates poverty. If nations and regions can reverse environmental decline then they can at the same time advance the alleviation of poverty, and secure reliable food and water, and good health, for all.

And to reinforce such arguments, new and entirely separate research continues to underline the UN vision of natural capital as real investment in the services on which all humankind depends.

Vital sanitation need

In 48 cities around the globe, nature provides at least 18% of the sanitation services: creatures in the soils filter and clean around 2.2 million cubic metres of human excrement in the form of pit latrines before it can reach the groundwater table.

Since, in 2017, around one fourth of the global population had no access to sanitation facilities, and 14% used toilets that disposed of waste on site, this is not just an important service but a vital one: vital to human health.

The same research team reports in the journal One Earth that − since more than 892 million people worldwide in effect release excrement into holes in the ground − then nature must sanitise more than 41 million tonnes of human waste every year before it gets into the groundwater. So that’s a service worth US$4.4 billion (£3.14bn) a year, British researchers calculate.

Around 70% of the world’s crops depend on insect pollination, and the range and abundance of insect pollinators is vulnerable to shifts in climate. Importantly, many crops rely on wild pollinators − that is, commercial honey bee colonies cannot always do the trick of turning flowers into fruit, or grain − so what happens to wild insect populations affects what is available for supper.

“The war on nature has left the planet broken. But it guides us by providing a peace plan and a post-war rebuilding programme”

US researchers report in the journal Ecological Applications that they took the case of wild bees and open field tomato crops: these depend on insects that release pollen by vibration, among them bumble bees.

They matched distribution of 15 species and climate data now against predictions for climate change across North America to find that − in the eastern US alone − within the next three to four decades, 11 species of pollinator could be in decline. The implications for food security are inescapable.

And a third study simply looked at what climate change, human population expansion, pollution and demand for freshwater had done to the planet’s rivers and lakes.

French and Chinese scientists report in the journal Science that they had identified what they call “marked changes” in the biodiversity of more than half the world’s rivers and lakes, thanks to human impact.

Of more than 1,000 fish species, 170 were extinct in their natural river basins, at a very conservative estimate. Out of 2,456 river basins, found everywhere except the deserts and the poles, 1,296 of them, covering more than 40% of the planet’s continental surface, and accounting for 37% of the length of the world’s rivers, revealed “deep and spatially distributed anthropogenic impacts.” That is science-speak for loss and defilement.

Lethal heat prospect

Such research − published on an almost daily basis − provides the context in which the latest UNEP report makes its argument. The report identifies a threefold planetary emergency and calls for advances in science and bold policy-making to make lives better both for the poorest in the world, and for nature itself.

It warns that the planet is heading for a warming of at least 3°C by the century’s end; that more than one million species could be heading for extinction; and that pollution-triggered diseases right now deliver an estimated nine million premature deaths each year.

“The war on nature has left the planet broken. But it also guides us to a safe place by providing a peace plan and a post-war rebuilding programme,” says António Guterres, UN secretary general, in the report’s foreword.

“By transforming how we view nature, we can recognise its true value. By reflecting this value in policies, plans and economic systems, we can channel investments into activities that restore nature and are rewarded for it.

“By recognising nature as an indispensable ally, we can unleash human ingenuity in the service of sustainability and secure our own health and well-being alongside that of the planet.” − Climate News Network

Cover photo by Dustan Woodhouse on Unsplash.
This article was originally posted on The Climate News Network.
Marine heatwaves are becoming more common and intense. What can we do to minimize harm?

Marine heatwaves are becoming more common and intense. What can we do to minimize harm?

By Jen Monnier

In the summer of 2015, Laurie Weitkamp was walking on the beach near her coastal Oregon home when she saw something strange: The water was purple. A colony of tunicates, squishy cylindrical critters that rarely come to shore, had congregated in a swarm so thick that you could scoop them out of the water with your hand. “I’d never seen anything like it,” she says.

Weitkamp, a research fisheries biologist with the Northwest Fisheries Science Center in Newport, Oregon, knew that something had been afoot in the northeast part of the Pacific Ocean since the fall of 2013, which was unusually sunny, warm and calm. A mass of warm water stretched from Mexico to Alaska and lingered through 2016, disrupting marine life. Tunicates weren’t the only creature affected; sea nettle jellyfish all but disappeared, while water jellyfish populations moved north to take their place, and young salmon starved to death out at sea, according to a report by Weitkamp and colleagues. Scientists dubbed this event “The Blob.”

Marine heat waves like The Blob have cropped up around the globe more and more often over the past few decades. Scientists expect climate change to make them even more common and long lasting, harming vulnerable aquatic species as well as human enterprises such as fishing that revolve around ocean ecosystems. But there’s no reliable way to know when one is about to hit, which means that fishers and wildlife managers are left scrambling to reduce harm in real time.

Laurie Weitkamp
Fisheries biologist Laurie Weitkamp is helping develop policies to reduce the threat of marine heat waves, which can devastate ocean life. Photo courtesy of Laurie Weitkamp

Now, oceanographers are trying to uncover what drives these events so that people can forecast them and so minimize the ecological and economic damage they cause.

Unprecedented Heat

The Blob, which lasted three years, is the longest marine heat wave on record. Before that, a heat wave that began in 2015 in the Tasman Sea lasted more than eight months, killing abalone and oysters. A 2012 heat wave off the East Coast of Canada and the U.S., the largest on record at the time, pushed lobsters northward. It beat the previous record — a 2011 marine heat wave that uprooted seaweed, fish and sharks off western Australia. Before that, a 2003 heat wave in the Mediterranean Sea clinched the record while ravaging marine life.

As Earth’s climate warms, record-setting marine heat waves are becoming more frequent and severe. Map adapted from Marine Heatwaves International Working Group.

Heat waves are a natural part of ocean systems, says Eric Oliver, an assistant professor of oceanography at Dalhousie University in Nova Scotia, Canada. As with temperature on land, there’s an average ocean temperature on any particular day of the year: Sometimes the water will be warmer, sometimes it will be colder, and every once in a while it will be extremely warm or cold.

But greenhouse gas emissions have bumped up the average temperature. Now, temperatures that used to be considered extremely warm happen more often — and every so often, large sections of the ocean are pushed into unprecedented heat, Oliver says.

Pelagic ocean ecosystems, however, have not caught up to these hotter temperatures. Organisms may be able to survive a steady temperature rise, but a heat wave can push them over the edge.

A 2011 marine heat wave off western Australia reduced local catch of blue swimmer crabs by more than 90%, resulting in a temporary shutdown of the fishery to allow the species to recover. Photo courtesy of Putneypics from Flickr, licensed under CC BY-NC 2.0

When blue swimmer crabs started dying in western Australia’s Shark Bay after the 2011 heat wave, the government shut down blue crab fishing for a year and a half. This was hard on industry at the time, says Peter Jecks, managing director of Abacus Fisheries, but it managed to save crab populations. Not all creatures were so lucky — abalone near the heat wave’s epicenter still haven’t recovered.

“If you don’t have strong predictions [of marine heat waves], you can’t be proactive. You’re left to be reactive,” says Thomas Wernberg, an associate professor of marine ecology at the University of Western Australia.

See Them Coming

After Wernberg saw his region’s sea life devastated by the heat wave, he recruited scientists from many disciplines in 2014 to begin studying these extreme events in what became the Marine Heatwaves International Working Group. The group held their first meeting in early 2015 and has since created protocols for defining and naming marine heat waves, tracking where they happen and measuring their ecological and socioeconomic impacts.

If we could see heat waves coming, aquaculturists, fishers and wildlife managers would have a better chance at saving money and species, Wernberg says. Seafood farmers could hold off stocking their aquaculture facilities with vulnerable species. Lawmakers could enact seasonal fishing closures or temporarily expand protected areas. Scientists could store animals or seeds of vulnerable plants.

That’s why scientists around the world are trying to understand what triggers extreme warming in the ocean. Oliver is one such scientist. He feeds ocean data gathered by scientists, satellites, buoys, and deep-diving robots into computer modeling software to identify the forces that drive marine heat waves.

It’s a relatively new field of research for which there are still few definitive answers. But past heat waves can be broadly classified into two categories, Oliver says: those driven by the ocean and those driven by the atmosphere.

For an example of an ocean-driven heat wave, Oliver points to the 2015 Tasman Sea heat wave. An ocean current that flows south down the East Coast of Australia normally veers toward New Zealand, but in 2015 it pulsed westward toward Tasmania, bringing a wave of warm water from the tropics that lingered more than six months. “Tropical fish were seen in water that is normally almost subpolar in temperature,” Oliver says.

On the other hand, a 2019 heat wave in the Pacific, the so-called “Blob 2.0,” was brought down from the atmosphere, according to Dillon Amaya, a climate scientist at the University of Colorado, Boulder. Using computer models, Amaya found that this heat wave emerged when a weather system over the Pacific lost steam, leading to weaker-than-usual winds. Wind helps cool the ocean by evaporating surface water in the same way a breeze cools a person’s sweaty skin. But stagnant air above the Pacific locked more of the sun’s heat into the water that year.

eastern Pacific marine heat wave map
The recent “Blob 2.0” heat wave bears some resemblance to “The Blob,” which disrupted marine life from Mexico to Alaska over the course of three years. Graphic courtesy of NOAA Coral Reef Watch

Amaya is able to simulate heat waves thanks to recent technological advances. Scientists have known for decades that marine heat waves exist, he says, but “we have just begun to recognize these events as unique and deterministic — something we can predict — in the last five to 10 years.”

That understanding inspired researchers to build computer simulations capable of playing out complicated ocean processes by weaving together information about ocean and atmospheric currents, sea surface temperature and salinity. Creating these simulations helps them learn more about heat wave mechanics, which lays the groundwork for predicting future events.

Back in Oregon, Weitkamp is part of the group that manages the Pacific Salmon Treaty between the U.S. and Canada. As heat waves like The Blob and Blob 2.0 deplete fish populations, the group is trying to figure out how to create policies better suited to this new normal. Knowing when the next one might hit could help.

“These heat waves have been a good wake-up call,” she says. “People are trying to figure out how they’re going to adapt.”

This article was originally posted on Ensia.
Cover photo by Adam Goldberg Photography
Wild flowers and bees contend with climate heat

Wild flowers and bees contend with climate heat

By Tim Radford

Many alpine flowers could soon fade out. Some bees may be buzzing off. The wild things are victims of climate heat.

LONDON, 9 February, 2021 − Thanks to climate heat, this could be the last farewell to mossy saxifrage, to alpine wormwood and mignonette-leafed bittercress. With them could go plants most people could hardly name: dwarf cudweed, alpine stonecrop, mossy cyphel, cobweb houseleek and two kinds of hawkweed. All of them are mountain-dwellers, hardy little plants that depend for their existence on alpine glaciers.

And almost everywhere in the world, high-altitude rivers of ice are in retreat. Global heating, climate change and human disturbance alter both the conditions for growth and the rich variety of life.

In the same week that one team of researchers listed the alpine flowers threatened with extinction, another team of scientists assembled an inventory of observations of wild bees, to find that a quarter of the world’s 20,000 bee species have not been recorded in the last 25 years.

Bees and flowers are interdependent: they evolved together and would perish together. But climate change threatens to take a selective toll on a range of alpine plants − beloved of gardeners but also important in liqueurs and medicines − as glaciers retreat in the mountainous regions.

These little flowers are to be found variously in the Sierra Nevada in Spain, the Apennines in Italy, along the spine of the Alps in Switzerland and Austria, and even in the highlands of Scotland.

And one day, according to a new study in the journal Frontiers in Ecology and Evolution, many or all of them could be locally extinct.

“Something is happening to the bees, and something needs to be done … The next step is prodding policymakers into action while we still have time. The bees cannot wait”

The wildflowers listed in the first two sentences − Saxifraga bryoidesArtemisia genipiCardamine resedifoliaLeucanthemopsis alpinaGnaphalium supinumSedum alpestreMinuartia sedoidesSempervivum arachnoideumHieracium staticifolium and H. glanduliferum − could all go, and another suite of alpine opportunists could take advantage of their living space.

Californian researchers report that they looked at 117 plant species and matched them with geological evidence from four glaciers in the Italian Alps, and then used computational systems to calculate how plant communities have changed over the last five thousand years, and what might happen as the glaciers continue to retreat.

They found that as the glaciers disappear, more than one in five of their sample alpines could also vanish. The loss of that 22% however could be to the benefit of around 29% of the surveyed species, among them the snow gentian, Gentiana nivalis and the dwarf yellow cinquefoil Potentialla aurea. Some alpines would probably not be affected: among them alpine lovage or Ligusticum mutellina and Pedicularis kerneri, a variety of lousewort.

The authors make no mention of one alpine almost everybody in the world could name: Leontopodium nivale or edelweiss. But what happens to even the most insignificant wild plants matters to everybody.

“Plants are the primary producers at the basis of the food web that sustained our lives and economies, and biodiversity is the key to healthy ecosystems − biodiversity also represents an inestimable cultural value that needs to be properly supported,” said Gianalberto Losapio, a biologist at Stanford University in the US.

Growing interest

Meanwhile in Argentina researchers decided to take advantage of citizen science to check on some of the flower world’s biggest fans, the wild bees. There has been huge concern about observed decline in insect abundance, as wild ecosystems are colonised by humans and global average temperatures rise to change the world’s weather systems.

But over the same decades, there has also been a dramatic increase in informed interest in the wild things, among gardeners, bird-watchers and butterfly lovers, and an exponential rise in records available to an international network of databases called the Global Biodiversity Information Facility.

And, say researchers in the journal One Earth, as global records soar, the number of bee species listed in those records has gone down. Around 25% fewer species were recorded between 2006 and 2015 than were listed in the 1990s.

Wild bees have a role in the pollination of about 85% of the world’s food crops. Without the bees, many wild flowers could not replicate.

“It’s not exactly a bee cataclysm yet, but what we can say is that wild bees are not exactly thriving,” said Eduardo Zattara, a biodiversity researcher at CONICET-Universidad Nacional del Comahue.

“Something is happening to the bees, and something needs to be done. We cannot wait until we have absolute certainty because we rarely get there in the natural sciences. The next step is prodding policymakers into action while we still have time. The bees cannot wait.” − Climate News Network

This article was originally posted on The Climate News Network.
Cover photo by Dirk Beyer, via Wikimedia Commons
Disappearing glaciers are threatening rare alpine plants with extinction

Disappearing glaciers are threatening rare alpine plants with extinction

By Robert Baxter

High up on a mountain where winds are too fierce, temperatures too extreme and soils too poor for trees, some of the most unusual plants on Earth grow. In this harsh alpine zone where shade is scarce, species such as the houseleek have evolved to withstand the punishing ultraviolet radiation by being able to quickly repair their DNA.

Cushion plants, which resemble pin cushions dropped on the ground, grow so close to the soil that they effectively huddle for shelter from the sheer, drying winds overhead. This helps species like vernal sandwort and mossy saxifrage trap dead plant matter blown along the ground – a welcome supply of compost and moisture amid the dry and barren landscape.

A bunch of white and yellow flowers growing close to the rocky mountain soil.
Mossy saxifrage (saxifraga bryoides) bunches close to the ground to protect itself from howling mountain winds. Losapio/Frontiers in Ecology and Evolution

These characteristics make some alpine plants very good pioneers – they can arrive on bare ground and begin changing it so that it becomes more suitable for other species. But as the global climate changes, mountain ranges are warming fast. Despite its hardy reputation, the unique flora of these regions faces an uncertain future.

In a new study published in Frontiers in Ecology and Evolution, researchers found that one-fifth of alpine plant species on four glaciers in the Italian Alps are likely to become locally extinct once the glaciers vanish from the high mountains. Some of these European species are plants which are found nowhere else on Earth.

Why alpine plants need glaciers

In Valmalenco in the Italian Alps, the Ventina glacier is receding by about 30 metres a year. As it retreats, the glacier unveils bare ground which, in many places, has been covered by ice for thousands of years. In the past, glaciers have advanced with cooler temperatures and greater snowfall, and retreated in warmer and less snowy periods. Scientists have long studied the sequence of colonisation of bare ground by plants as time passes from the glacier’s retreat, often over many centuries.

This is a process similar to what many readers will have observed on bare ground prepared for planting in a garden. If the ground is left even for a short period, opportunistic weedy species quickly establish themselves. Left for longer, a whole community of different plants develops. New arrivals grow and shade the early colonisers, stabilise the ground and help trap moisture, changing conditions so that pickier plants can put down roots.

A patch of buttercups in bare rock with a glacier in the background.
Glacier buttercups (Ranunculus glacialis), which are among the highest ascending alpine plants, in front of the Rutor glacier, Italy. Losapio/Frontiers in Ecology and Evolution

New areas of bare ground in front of retreating glaciers are where many unique alpine plants are adapted to thrive. But with continued warming threatening the extinction of some glaciers, halting the uncovering of new bare ground year upon year, the rare alpine colonisers are forced higher and higher up the mountain and eventually left with nowhere to grow.

‘Escalator to extinction’

In the constant battle for space, light, water and nutrients, there are inevitably winners and losers. Pioneer species are specialised for doing well in open habitats, but the conditions these specialists help create are exploited by more competitive species which eventually push them out. These generalist competitors are more likely to flourish in the long term as glaciers vanish. They represent 29% of alpine species and include alpine meadow-grass and dwarf yellow cinquefoil.

A fan-like plant with green and purple flowers.
Alpine meadow-grass (Poa alpina) has a vast distribution throughout the northern hemisphere. Heinz Staudacher/WikipediaCC BY-SA

Without glaciers exposing new bare ground, not only are pioneer species lost, but the process they help start is affected. The very warming that is causing glaciers to retreat is also forcing plants from lower altitudes upwards into the alpine zone, adding to the pressure on existing alpine specialists and ultimately favouring fewer, more competitive plants.

What will happen with these new communities of plants is unclear. But plants support a wider community of species, including pollinating insects, grazing animals and soil microbes that stitch together alpine ecosystems. Losing certain plant species and reducing the mountain’s overall biodiversity will have consequences stretching far beyond the plants themselves.

Slowing the rate of global warming would probably slow the rate at which the world’s glaciers are retreating. But for many dependent alpine species, it may already be too late.

Cover photo by Losapio/Frontiers in Ecology and Evolution
This article was originally published on The Conversation. Read the original here.
Wetlands have saved Australia $27 billion in storm damage over the past five decades

Wetlands have saved Australia $27 billion in storm damage over the past five decades

By Obadiah Mulder and Ida Kubiszewski

Australia is in the midst of tropical cyclone season. As we write, a cyclone is forming off Western Australia’s Pilbara coast, and earlier in the week Queenslanders were bracing for a cyclone in the state’s far north (which thankfully, didn’t hit).

Australia has always experienced cyclones. But here and around the world, climate change means the cyclone threat is growing – and so too is the potential damage bill. Disadvantaged populations are often most at risk.

Our recent research shows 54 cyclones struck Australia in the 50 years between 1967 and 2016, causing about A$3 billion in damage. We found the damages would have totalled approximately A$30 billion, if not for coastal wetlands.

Wetlands such as mangroves, swamps, lakes and lagoons bear the brunt of much storm damage to coast, helping protect us and our infrastructure. But over the past 300 years, 85% of the world’s wetland area has been destroyed. It’s clear we must urgently preserve the precious little wetland area we have left.

A wetland close to coastal development.
Wetland areas provide important protection from cyclones. Shutterstock

A critical buffer

National disasters cost Australia as much as A$18 billion each year on average. About one-quarter of this is due to cyclone damage.

Wetlands can mitigate cyclone and hurricane damage, by absorbing storm surges and slowing winds. For example in August 2020, Hurricane Laura hit the United States’ midwest. Massive damage was predicted, including a 6.5-metre storm surge extending 65 kilometres inland.

However the surge was one metre at most – largely because the storm drove straight into a massive wetland that absorbed most of the predicted flood.

In Australia, wetlands are lost through intentional infilling or drainage for mosquito control, or to create land for infrastructure and agriculture. They’re also lost due to pollution and upstream changes to water flows.

Putting a price on cyclone protection

Our research set out to determine the financial value of the storm protection provided by Australia’s wetlands.

We examined the 54 cyclones that struck Australia in the five decades to 2016. We gathered data including:

  • physical damage wrought in each storm swath (or storm path)
  • gross domestic product (GDP) in the storm’s path
  • maximum windspeed during each storm, which helps predict damage
  • total area of wetlands in each swath.

Using a powerful type of statistics called Bayesian analysis, we estimated the extent to which GDP, windspeed and wetland area affected total damage. This allowed us to estimate damage caused in the absence of wetlands.

We found for every hectare of wetland, about A$4,200 per year in cyclone damage was avoided. This means the A$3 billion in cyclone damage over the past 50 years would have totalled approximately A$30 billion, if not for coastal wetlands.

Importantly, the percentage of damage averted falls rapidly as wetland area decreases. And the protection afforded by a single hectare of wetland increases drastically if there are fewer other wetlands in the path of the storm. This makes protecting remaining wetland even more critical.

If the average cyclone path in Australia were to contain around 30,000 hectares of wetlands, it would avert about 90% of potential storm damage. If the wetland area dropped to 3,000 hectares, only about 30% of damage would be averted.

Climate change is making cyclones worse. By 2050, Australia’s annual damage bill could be as high as A$39 billion, assuming current levels of wetlands are maintained.

Seawalls and other artificial structures can be built along the coast to protect from storms. However, research in China has found wetlands are more cost-effective and efficient than man-made structures at preventing cyclone damage.

Unlike man-made structures, wetlands maintain themselves. Their only “cost” is the opportunity cost of not being able to use the land for something else.

Keeping wetlands safe

According to recent analysis by the authors, which is currently under peer review, global wetlands provide US$447 billion (A$657 billion) worth of protection from storms each year.

Of course, wetlands provide benefits beyond storm protection. They store carbon, regulate our climate and control flooding. They also absorb waste including pollutants and carbon, provide animal habitat and places for human recreation.

Wetlands are an incredibly important resource. It’s critical we protect them from development and keep them healthy, so they can continue to provide vital services.

This article was originally published on The Conversation.

Life on land, life below water: Monitoring climate adaptation in Guatemala’s marine coastal zones – for the benefit of people and planet

Life on land, life below water: Monitoring climate adaptation in Guatemala’s marine coastal zones – for the benefit of people and planet

With around one-third of Guatemala cloaked in tropical rainforest, and dozens of volcanoes and UNESCO World Heritage sites, the “land of many trees,” is rightly famous for its life on land.

Yet this picture reveals only part of Guatemala’s riches. Below the ocean surface is a world of immense abundance and importance.

The oceans on either side of the country are national and international treasures. Home to thousands of species, they play a crucial role in regulating the Earth’s climate system, while also providing essential goods and services for sustaining human health and wellbeing: food, clean air and water, and livelihoods.

Guatemala is among 20 “megadiverse” countries listed under the Convention on Biological Diversity, which together cover around 10 percent of the Earth’s surface but hold about 70 percent of the planet’s biodiversity.

The impacts of climate change on Guatemala’s coasts

According to Germanwatch’s Global Climate Risk Index, Guatemala ranked 16th in the world for countries most affected by extreme weather events in the 20-year period 1999 to 2018.

Particularly vulnerable are the Pacific and Caribbean marine coastal zones, which straddle either side of the country (represented on the national flag by two blue stripes).

Here, the fingerprints of climate change are evident: rising sea levels, changing weather patterns, and other impacts are directly affecting communities, ecosystems, and the economy.

The implications are considerable. These zones – which include over 120,000 km2 of marine space, greater than the land area of Guatemala – directly and indirectly support the livelihoods of 25 percent of the country’s population.

They represent economic activities of great national significance – for example, tourism, fishing and aquaculture, subsistence and export crop farming, and ports. 

Recognizing climate risks has led Guatemala to emphasize climate adaptation, including marine coastal zones, in its National Development PlanNational Climate Change Action PlanNational Adaptation Plan, and its climate pledge (Nationally Determined Contribution, or NDC) under the global Paris Agreement.

Through the NDC Support Programme and Climate PromiseUNDP has been supporting Guatemala in its efforts.

Coastal systems are acutely sensitive to three key drivers related to climate change: sea level, ocean temperature, and ocean acidity.

Information key to decision-making

In 2019, the Guatemalan Ministry of Environment and Natural Resources established the National Climate Change Information System (SNICC) to support evidence-based decision-making around climate change.

It is a digital platform that contains data and strategic information to inform planning, investment, and public policy processes, to help Guatemala reduce its vulnerability and address greenhouse gas emissions.

In parallel, the country has been working on several fronts to improve its data and analyses on relevant sectors (for example, land-use and agriculture).

One area in which information has been lacking is marine coastal zones.

To address the gap, UNDP and the Rainforest Alliance have been working with the Guatemalan government over the past year to develop its first fully-fledged monitoring, evaluation, and reporting (MER) system in this area. 

Its completion is a significant milestone. And one achieved through partnership, between the government, NGOs, academia, and the private sector. 

How the system works

At the heart of the new MER system are 38 indicators, spanning climatic indicators – such as rainfall, sea level, water temperature, ocean acidification, and cyclones and storms – to indicators related to the economy and livelihoods – for example, water availability, floods, and crops – to indicators reflecting biodiversity and the health of ecosystems, and finally indicators around population and planning, including vector-borne diseases.

For each, the system lays out a precise description of what is being measured, the status of climate adaptation in these areas (‘baseline’), and a protocol by which responsible parties – including government agencies and private entities – will collect data to measure changes. 

The system is designed to ensure input is robust and transparent. Information is aligned not only with the National Climate Change Information System but also with the standards of Guatemala’s National Statistics Institute. Data generated by organizations outside the government will be validated to ensure the quality and transparency of sources and methodologies for collection. 

The results will be very valuable. As well as being used to inform government decisions and policies related to climate action, the system will contribute to the country’s reporting processes, such as the country’s upcoming Third National Communication on Climate Change to the UNFCCC. And be used as a model by other sectors.

Everyday citizens will also be able to view the data and analyses through the National Climate Change Information System.

The system will be central to promoting and tracking improvements in the management of marine coastal zones through the inclusion of climate change adaptation in municipal development, land use, and protected-area planning.

It will also facilitate innovations such as adaptive agriculture that respond to climate variations, systems to mitigate flood impacts, and marine spatial planning.

monitoring, evaluation and reporting system for adaptation of the agricultural sectors, supported by UNDP and FAO, will complement the system and ensure a more holistic picture for Guatemala’s decision-makers.

Driving adaptation and ambition

Monitoring is essential for informing the adaptation actions of different sectors and institutions – and to driving progress toward national climate commitments.  

The new MER system will serve as the basis for this, tracking marine coastal zone adaptation targets, intimately linked to national development priorities. 

Importantly, however, the system will also help inform the ambition of next-generation adaptation goals.

With Guatemala now updating its climate commitments under the Paris Agreement, the new MER system is incredibly timely – helping the country to define clearer targets and propel action for resilience.

This article was originally posted on the UNDP website.
Cover photo by Caroline Trutmann/PNUD Guatemala
Natural hotspots lose ground to farms and cities

Natural hotspots lose ground to farms and cities

By Tim Radford

Nature concentrates its riches in selected spots. Save those natural hotspots, and you could save biodiversity. Really?

Nations that signed up to preserve biodiversity − the richness of living things in the world’s forests, grasslands and wetlands − are not doing so very well: in one generation they have altered, degraded or cleared at least 1.48 million square kilometres of natural hotspots unusually rich in wildlife.

This is an area in total larger than South Africa, or Peru. It is almost as large as Mongolia. And importantly, this lost landscape adds up to 6% of the scattered ecosystems that make up the world’s biodiversity hotspots.

The biodiversity hotspot was defined, in 2000, as an area of land home to at least 0.5% of the world’s endemic species of plant. That means that a tract of marsh, savannah, upland or forest that may have already lost 70% of its cover is host to at least 1500 species native to that landscape and nowhere else.

Researchers at the time calculated that 44% of all vascular plants and 35% of all amphibians, reptiles, birds and mammals could be concentrated in just 25 such hotspots on the world’s continents and islands.

The hotspot count has since been increased to 34. But the message has remained. Focus on preserving and protecting these areas and you have a “silver bullet” strategy for conserving wildlife worldwide.

First such inventory

But, say scientists in the journal Frontiers in Ecology and the Environment, between 1992 and 2015 much of this precious wilderness has been consumed by agriculture, or paved by sprawling cities.

Their analysis of high resolution land-cover maps made by the European Space Agency is the first to try to look at the global inventory of hotspots, over a time frame of almost a quarter century.

“We see that not even focusing protection on a small range of areas worked well,” said Francesco Cherubini of the Norwegian University of Science and Technology, who with colleagues carried out the research. “There was major deforestation even in areas that were supposed to be protected.”

Two fifths of the lost landscapes were in forests, and agriculture accounted for most of this loss, particularly in the tropical forests of Indonesia, the Indo-Burma region and Mesoamerica. Five per cent of the lost hotspots were in areas formally declared as under state protection.

“The soils in these areas are very fertile, and agricultural yields can be very high. So it’s very productive land from an agricultural point of view, and attractive to farmers and local authorities that have to think about rising local incomes by feeding a growing population,” Professor Cherubini said.

“Not even focusing protection on a small range of areas worked well … There was major deforestation even in areas that were supposed to be protected.”

But most of the lost land went not to feeding people: it went instead to producing palm oil or soybeans for cattle feed. And local people may not have benefited: the change was driven by commercial agribusiness.

“You have these big companies that are making these investments, with high risks of land overexploitation and environmental degradation. The local population might get some benefits from revenues, but not much.”

The tension between hungry humans and vulnerable wilderness continues. Once again, such research supports a call for the people of the planet to consider a switch to plant-based diets, a switch that could contain climate change and preserve the natural capital on which all life depends. But many of those rich habitats are in some of the poorest countries.

“We need to be able somehow to link protection to poverty alleviation, because most of the biodiversity hotspots are in underdeveloped countries and it’s difficult to go there and say to a farmer, ‘Well, you need to keep this forest − don’t have a rice paddy or a field to feed your family’”, Professor Cherubini said.

“We need to also make it possible for the local communities to benefit from protection measures. They need income, too.” − Climate News Network

This article was originally posted on The Climate News Network.
Cover Image: By Cygnis insignis, (public domain), via Wikimedia Commons
Hunger threat as tropical fish seek cooler waters

Hunger threat as tropical fish seek cooler waters

By Paul Brown

Stocks of tropical fish that have provided vital protein for local people for generations may soon disappear as the oceans warm, leaving empty seas in their wake, scientists believe. But there could be help in international protection schemes.

Already researchers have found that fish are voting with their fins by diving deeper or migrating away from equatorial seas to find cooler waters. But now they have calculated, in a study published in the journal Nature, that tropical countries stand to lose most if not all of their fish stocks, with few if any species moving in to replace them.

Although scientists have known that the composition of stocks is changing in many world fisheries, they have not until now fully appreciated the devastating effect the climate crisis will have on tropical countries.

In the North Sea, for example, when fish like cod move north to find cooler and more congenial conditions for breeding, they are replaced by fish from further south which also have a commercial value, such as Mediterranean species like red mullet. But when fish move from the tropics there are no species from nearer the equator that are acclimatised to the hotter water and able to take their place.

Now Jorge García Molinos of Hokkaido University and colleagues in Japan and the US have undertaaken a comprehensive study of 779 commercial fish species to see how they would expand or contract their range under both moderate and more severe global warming between 2015 and 2100, using 2012 as a baseline for their distribution.

“The exit of many fishery stocks from these climate change-vulnerable nations is inevitable, but carefully designed international cooperation could significantly ease the impact on those nations”

The computer model they used showed that under moderate ocean warming tropical countries would lose 15% of their fish species by the end of this century. But if higher greenhouse gas emissions continued, fuelling more severe heat, that would rise to 40%.

The worst-affected countries would be along the north-west African seaboard, while south-east Asia, the Caribbean and Central America would also experience steep declines.

Alarmed by their findings, because of the effect they would have on the nutrition of the people who relied on fish protein for their survival, the scientists examined existing fisheries agreements to see if they took into account the fact that stocks might move because of climate change.

Analysis of 127 publicly-available international agreements showed that none contained language to deal with climate change or stock movements to other waters.

Some dealt with short-term stock fluctuations but not permanent movements, and did not deal with the possible over-fishing of replacement stocks.

Global help

The scientists suggest an urgent look at the issue at the annual UN climate talks because of the loss of fish stocks and the financial damage that warming seas will do to the economies of some of the world’s poorest countries.

They go further, suggesting that poor countries could apply for compensation for damage to their fisheries during negotiations under the Warsaw International Mechanism for Loss and Damage associated with Climate Change Impacts (WIM), and also raise the possibility of help from the Green Climate Fund, set up to help the poorest countries adapt to and mitigate the effects of climate change.

Professor García Molinos, based at Hokkaido’s Arctic Research Center,  said: “The exit of many fishery stocks from these climate-change vulnerable nations is inevitable, but carefully designed international cooperation together with the strictest enforcement of ambitious reductions of greenhouse gas emissions, especially by the highest-emitter countries, could significantly ease the impact on those nations.”

While the research relies on computer models to see how fish will react to warming seas in the future, the scientific evidence available shows that they are already responding. It also shows that keeping the world temperature increase down to 1.5°C, the preferred maximum agreed at the 2015 Paris climate talks, would help fisheries globally.

And the Hokkaido research demonstrates yet again how it is the poorest nations, which have contributed least to the carbon dioxide and other greenhouse gas emissions causing climate change, that will suffer most from their effects.

This article was originally published on the Climate News Network.
Cover photo by jean wimmerlin on Unsplash
Worst marine heatwave on record killed one million seabirds in North Pacific Ocean

Worst marine heatwave on record killed one million seabirds in North Pacific Ocean

By Tim Birkhead

The common guillemot (known as the common murre in North America) breeds in both the Pacific and the Atlantic and is among the most abundant seabirds in the northern hemisphere. But like many other seabirds, its numbers have declined over the last few decades. Part of that decline is due to the marine environment – a seabird’s home and hunting ground – becoming increasingly unpredictable and difficult to survive in.

Between the summer of 2015 and the spring of 2016, a marine heatwave swept the northern Pacific Ocean that was hotter and lasted longer than any since records began in 1870. Known as “the blob”, the heatwave caused sea surface temperatures along the Pacific coast of North America to rise by 1-2°C. That may sound trivial, but it was enough to cause massive disruption in the marine ecosystem. The fish that common guillemots normally eat, such as herring, sardine and anchovy, either died or moved into cooler waters elsewhere, leaving the guillemots with little to eat. As a result, many birds starved.

On January 1 and 2 2016, 6,540 common guillemot carcasses were found washed ashore near Whitter, Alaska. David B. Irons, CC BY

A new study has revealed that one million common guillemots died due to the heatwave, and two thirds of them are thought to have been breeding adults. In a healthy population, about 95% of the breeding birds survive from one year to the next. But a bad year for adult survival causes big problems for the total population.

This is because guillemots live up to 40 years and mature slowly, producing a single egg per annual clutch. A female may start breeding at the age of seven and continue to breed each year until she dies. Most seabirds live similar lives because the food on which they rear their offspring is often a long way from land. Ferrying food back to the breeding colony is what limits how many offspring they can rear in any one year. Rearing just a single chick at a time makes sense, but if many adult birds of reproductive age die, there are no new chicks to replace those birds that are lost, and so the population declines.

Seabirds wrecked by ocean warming

Researchers based the estimate of one million dead guillemots on the numbers of dead or dying birds that washed up between California and the Gulf of Alaska. A total of 62,000 birds were found on 6,000km of coastline, but not all birds that die at sea end up on beaches. Previous studies have shown that the number of birds actually found dead needs to be multiplied by at least seven times – and possibly as much as several hundred times – to find the minimum estimate of the total numbers dead. That means that “one million dead seabirds” might actually be a conservative guess.

According to the new study, breeding populations in the Gulf of Alaska suffered a 10-20% decrease in numbers. Complete breeding failure, where birds either failed to lay eggs or failed to rear any chicks, was reported at 22 regularly monitored guillemot colonies in Alaska during the breeding seasons of 2015, 2016 and 2017. Complete breeding failure is extremely unusual among guillemots and it’s a clear sign that food is in extremely short supply.

Temperatures in the northeast Pacific Ocean broke records during the 2015-2016 heatwave. NOAA

The appearance of unusually high numbers of dead birds washed up on the shoreline is referred to as a “wreck”. Wrecks of common guillemots and related species such as puffins have been known about for many years. These population crashes may be a regular aspect of guillemot biology, but this one was far larger and over a much wider geographic area than any wreck seen before.

In most cases, wrecks are the result of persistent stormy conditions, disrupting the availability of fish on which seabirds like guillemots and puffins depend. When seas are rough and the weather harsh, the increased energy demands can kill many birds. The most recent wreck in the UK and western Europe occurred in the spring of 2014, and it killed at least 50,000 birds, mainly common guillemots and Atlantic puffins.

The common guillemot populations in the Pacific and western Europe will probably recover from both of these recent wrecks, providing there’s no further turmoil, but there’s no room for complacency. The only way scientists will know if populations have recovered is by monitoring the birds. It’s an activity that is generally regarded as the lowest form of scientific endeavour, but one that’s absolutely vital in a world of declining wildlife.

Tim Birkhead and his field assistant Dr Jess Meade on Skomer in 2012. Tim Birkhead, Author provided

I’ve been studying and monitoring the number of common guillemots on Skomer Island, Wales since 1972. In that time, I’ve realised how essential this work is to understanding how guillemot populations work. Beach counts of dead seabirds allow scientists to detect unusual events, but these counts are meaningless without information on the overall size of the population. Without regular monitoring of seabird colonies on North America’s west coast, the researchers wouldn’t have known what proportion of the total population died, and would have missed the total breeding failures in the Alaskan colonies.

The North Pacific common guillemot wreck was unprecedented for the sheer numbers of birds killed, and the vast region over which it occurred. But the marine heatwave that caused it may be just a taste of what is to come for seabirds around the world as climate change accelerates.

This article was originally posted on The Conversation.
Cover photo by Duncan Wright., CC BY-SA 3.0